Les nouvelles technologies pour l’enseignement des mathématiques
Intégration des TICE dans l’enseignement des mathématiques

MathémaTICE, première revue en ligne destinée à promouvoir les TICE à travers l’enseignement des mathématiques.

N°52 - novembre 2016

MathémaTICE est classée Interface par le HCERES (anciennement AERES)

 Des articles à lire ou à relire :

 Toutes les brèves de MathémaTICE (en partant des plus récentes. Le moteur de recherche opère aussi sur les brèves).

  Les articles du numéro : 

  • Yves Martin explore la géométrie de la tortue de DGPad, plongée dans un champ dynamique. Il en étudie les étonnantes nouveautés en termes de programmation, mais aussi en formation d’enseignants de mathématiques. Dans cet article considérable, les visiteurs trouveront des réflexions fondamentales (en algorithmique et en mathématiques) et d’innombrables exemples, traités dans le détail et accompagnés d’expérimentations en ligne (voir) ;
  • Patrice Debrabant et Alain Busser s’intéressent au robot Toto, dont le langage de programmation ne comporte que quatre instructions, désignées chacune par une seule lettre. Un programme devient alors un mot et l’article un jeu de mots. Ils réalisent ainsi un déplacement des problématiques et apportent un éclairage nouveau par rapport à la Programmation Visuelle par Blocs : Après tout, au commencement était le Verbe...(voir) ;
  • Patrick Raffinat enrichit sa suite logicielle Mathem@ALGO avec deux extensions mathématiques de Blockly :
    • l’extension « calcul formel » permet de relier programmation visuelle et calcul algébrique au collège avec des « programmes de calculs »
    • l’extension « R » peut être utilisée, à partir du lycée, pour faciliter une initiation à un langage statistique majeur (R) grâce à la programmation visuelle (voir l’article) ;
  • Paul Byache, Denis-Pierre Beaubiat et Clément Spaier ont testé avec leurs élèves, durant une année entière, un parcours d’étude et de recherche sur la géométrie et l’algorithmique en Seconde. Ils invitent les lecteurs à prolonger l’expérience dans leur propre contexte et à leur faire part des réflexions, suggestions et critiques qu’elle suscite (voir) ;
  • Eric Trouillot s’inquiète des résultats des élèves français, en nette baisse dans les enquêtes à propos de la maîtrise des nombres. Une approche par le calcul mental (et ses paradoxes) lui paraît une issue solide et raisonnable à une crise qui s’aggrave au fil des ans (voir) ;
  • Pierre Bernhard et Guy Cohen se plongent dans les TIPE des classes préparatoires. Le thème qu’ils abordent, Optimalité : choix, contraintes, hasard touche à de nombreux domaines, où les outils informatiques sont essentiels. L’article est repris du blog Binaire (voir) ;
  • David Crespil se penche sur le mécanisme complexe des marées dont le mouvement est réglé par la position relative de la lune, de la terre et du soleil, mais aussi par des particularités géographiques locales qui produisent un décalage de la marée par rapport au passage de la lune au méridien du lieu, désigné par l’établissement du port. Des animations aident à la compréhension et enrichissent l’article (voir) ;
  • Christophe Declercq souligne le défaut d’accessibilité de Scratch aux élèves présentant différents handicaps. Il appelle à commentaires et à contributions les lecteurs qui rencontrent cette difficulté dans leurs classes (voir) ;
  • Thomas Castanet décrit depuis Bamako son logiciel ChingView, qui transfère instantanément les photos prises avec un appareil Android vers un ordinateur.
    Couplé avec un vidéo-projecteur, ce dispositif affiche les productions d’élèves sur le tableau de la classe. L’article détaille les intéressantes retombées pédagogiques du dispositif (voir) ;
  • Christophe Hérault tente une communication renouvelée avec ses élèves par le truchement de Twitter : l’application qu’il propose et décrit permet d’insérer des écritures mathématiques dans les tweets qui leur sont destinés (voir) ;

  Pour mémoire

Merci d’adresser suggestions, critiques et propositions d’articles à mathematice@sesamath.net.

gkuntz@sesamath.net

Les derniers articles

Scratch et accessibilité : appel à commentaires et contributions
Publié le 15 octobre 2016
par Christophe Declercq

L’utilisation de Scratch comme environnement d’apprentissage de la programmation à l’école et au collège (cycles 3 et 4) se heurte à un défaut (...)

Mais si ! Le mieux est parfois l’ami du bien :)
Publié le 7 octobre 2016

Tous les ans les étudiantes et étudiants des classes préparatoires aux écoles d’ingénieur-e-s font un travail d’initiative personnelle encadré (TIPE) (...)

Tenter une autre communication avec les élèves
Publié le 7 octobre 2016
par Christophe Hérault

La communication avec les élèves est primordiale. Personnellement, je réalise qu’elle n’est pas totalement efficace en classe et ce pour de nombreuses (...)

Des langages de programmation à la programmation de langages
Publié le 7 octobre 2016
par Alain Busser,
Patrice Debrabant

NB : pour programmer Toto le robot, on peut utiliser une version Scratch, et la remixer pour se l’approprier. Mais dans l’esprit de cet article, et (...)

Blockly, calcul formel et statistiques
Publié le 7 octobre 2016
par Patrick Raffinat

A) Introduction

Ma suite logicielle Mathem@ALGO, détaillée dans le N°50, a pour but de faciliter l’enseignement de l’algorithmique, plus (...)

Les paradoxes du calcul mental
Publié le 7 octobre 2016
par Eric Trouillot

Toutes les images de cet article sont cliquables.

Un état des lieux

Des études récentes, notamment celle du CEDRE, montrent clairement que la (...)

Les marées et l’établissement du port
Publié le 7 octobre 2016
par David Crespil

PLAN

0) Introduction

1) Mécanisme de la marée

2) Les phases de la lune a) Les coordonnées écliptiques géocentriques b) Les alignements exacts c) (...)

ChingView - Capture de productions
Publié le 7 octobre 2016
par Thomas Castanet

Le logiciel ChingViewPrésentation

Le besoin de ce logiciel est né, il y a quelques années lors d’un exercice sur les nombres complexes avec une (...)

Géométrie et algorithmique en seconde
Publié le 7 octobre 2016
par Paul Byache,
Denis Beaubiat,
Clément Spaier

En pratique

Intentions initiales

Le point de départ du travail présenté ici est une conférence de Jill-Jênn Vie sur La géométrie dans les jeux (...)

Que devient une tortue plongée dans un champ dynamique ?
Publié le 11 août 2016
par Yves Martin

Avertissement

L’article comporte un nombre considérable d’images, que SPIP peine parfois à télécharger. Cela se traduit par des cadres vides (sauf, (...)