par Matthieu Brabant
Ce que disent les référentiels [1]
L’usage raisonné de la calculatrice est recommandé pour les trois champs disciplinaires et doit faire l’objet d’un apprentissage intégré : il n’est en effet pas questions de réserver un temps à part dédié à l’utilisation des outils informatiques. Parallèlement, l’initiation aux tableurs faite au collège doit être renforcée [...]. Les possibilités offertes par l’informatique d’expérimenter sur des nombres et des figures apportent de nouvelles motivations en mathématiques : des logiciels spécifiques pourront aider à surmonter certains obstacles rencontrés par les candidats au CAP.
L’emploi en mathématiques des matériels informatiques existant dans les établissements est à encourager : par exemple l’utilisation de micro-ordinateurs par les élèves en travaux dirigés, utilisation dans la classe d’un micro-ordinateur équipé d’une tablette de rétroprojection ou d’un grand écran. Dans les classes du cycle de détermination BEP, l’utilisation de logiciels (tableurs, grapheurs, ...)
peut faciliter grandement la compréhensionde nombreuses notions mathématiques et la résolution de problèmes : en produisant très rapidement des figures propres et variées, en permettant le mouvement de certains éléments choisis sur une figure... ces logiciels fournissent toute une série d’exemples et de contres-exemples numériques ou graphiques susceptibles d’apporter une motivation, d’alimenter le débat au sein de la classe et de donner du sens aux concepts mathématiques fgurant dans les différentes parties du programme (fonctions, statistiques, géométrie...).
L’emploi, en mathématiques, des matériels informatiques doit impérativement être développé, par exemple : utilisation de micro-ordinateurs par les élèves, utilisation dans la classe d’un micro-ordinateur équipé d’une tablette de rétroprojection ou d’un grand écran. L’utilisation de logiciels peut faciliter grandement la compréhension de nombreuses notions mathématiques et la résolution de problèmes, en produisant très rapidement des illustrations graphiques variées. Ces logiciels fournissent toute une série d’exemples et de contre-exemples numériques ou graphiques et permettent de donner du sens aux concepts mathématiques figurant dans les différentes parties du programme.
Les fonctions avec les TICE au CAP et au BEP
A ce niveau, les activités et exercices proposés doivent être les plus concrets possibles. Les élèves du niveau V sont souvent en remédiation scolaire (en particulier les élèves de CAP, qui viennent souvent, en tout cas pour mes élèves, de SEGPA).
J’utilise souvent MathenPoche en introduction, afin à la fois d’évaluer les connaissance des élèves et afin de leur proposer une entrée en matière à la fois active et ludique.
Les exercices suivants correspondent au niveau CAP/BEP :
Niveau 4ème : Proportionnalité
(la proportionnalité est une notion essentielle en CAP)
Niveau 3ème : Fonctions affines
J’utilise ensuite, en cours, des animations fabriquées avec Geogebra afin d’illustrer mes propos.
Ainsi, pour introduire la notion d’équation de droite, cette animation permet très souvent de débloquer la situation :
<geogebra|doc=2574>
Il suffit de déplacer les curseurs A et B pour modifer l’équation de la droite. Le calcul « à la main » apparait plus visuellement.
Dans la plupart des cas, cette petite animation permet aux élèves de mieux visualiser le problème.
Autre exemple tout aussi classique, la construction de la fonction sinus :
<geogebra|doc=2576>
Cette animation se complète éventuellement de la construction « à la main » de la fonction.
L’idée avec ces deux exemples est la même : proposer une illustration très visuelle, cette illustration permettant par ailleurs de gagner pas mal de temps par rapport à un cours n’utilisant que le support papier.
L’utilisation des tableurs est recommandée par les référentiels, mais, concrètement, et particulièrement dans les sections industrielles, l’utilisation du tableur est laborieuse (ce n’est pas vrai en section tertiaire).
De fait, je propose le plus souvent des feuilles de calculs déjà préparées. L’utilisation de l’ExAO permet quand même un travail, en particulier de recensement des données, avec un tableur.
Les sites de Gérard Ledu et de Daniel Mentrard proposent de nombreuses feuilles de calculs pour les maths et les sciences en LP.
Le référentiel fait état d’un « usage raisonné » de la calculatrice en CAP. De fait, les difficultés cognitives des élèves et le peu d’heures de cours de mathématiques ne permettent pas un usage optimal des calculatrices. La calculatrice n’est donc utilisée par les élèves de CAP que dans un mode calculatoire de base, d’ailleurs ils n’utilisent que des calculatrices de collège.
En BEP, l’usage de la calculatrice peut être encouragé, en particulier dans les sections tertiaires. N’ayant pas ce type de sections, je n’ai pas développé d’activités. Je vous recommande la lecture du numéro spécial de MathémaTICE sur l’usage des calculatrices : Numéro de Septembre 2006 de MathémaTICE.
Les fonctions avec les TICE au bac pro
Comme pour le CAP et le BEP, l’utilisation de MathenPoche est intéressante pour introduire et développer les notions abordées. Concernant les fonctions, il convient de partir du niveau 3ème (voir plus haut) et d’utiliser leniveau seconde (les divers chapitres sur les fonctions, la lecture des tableaux...).
Afin d’illustrer au mieux les cours, des animations Geogebra peuvent aussi être proposées.
Ainsi, cette animation sur la fonction dérivée :
<geogebra|doc=2575>
L’animation permet, une fois la fonction que l’on veut dériver choisie, de tracer immédiatement la fonction dérivée correspondante. Les élèves ont ainsi une idée très visuelle de ce qu’est une fonction dérivée.
Autre exemple, ces animations montrant les tangentes aux représentations graphiques de diverses fonctions :
<geogebra|doc=2577>
<geogebra|doc=2578>
Encore une fois, l’idée est bien là de proposer des illustrations assez ludiques et très visuelles à ces notions.
Même remarque que précédemment concernant les calculatrices.
En conclusion
Nous avons donc pu constater que l’utilisation des TICE piur les fonctions en lycée professionnel est particulièrement centrée sur l’illustration de notions que les élèves pourraient avoir du mal à comprendre. Les exemples que j’ai choisi vont dans ce sens et correspondent aux instructions données par les référentiels.
Incontestablement, cette manière d’utiliser les TICE est utile et permet de remédier à pas mal de lacunes des élèves.
On peut néanmoins regretter le peu de place laissé aux manipulations directes des élèves. D’ailleurs, le peu de temps donné aux mathématiques et aux sciences en lycée professionnel laisse peu de place piur réellement « expérimenter » avec les TICE ; on aurait peu espérer, avec l’arrivée de l’ExAO au bac pro et la constitution de nouveaux référentiels aux niveaux BEP et Bac pro, un développement dans ce sens des TICE. Malheureusement, les TP zéro proposés en ExaO montrent que la tendance est encore une fois à l’illustration (même si, je le répète, cette utilisation des TICE est très utile pour nos élèves). Par ailleurs, l’abandon de la construction des nouveaux référentiels avec la réforme du bac pro (le BEP est supprimé, remplacé par des bac pro en 3 ans dont les référentiels sont un bricolage entre le BEP et le bac pro... un référentiel est en construction dans ce sens, une certification -un « BEP rénové »- sans référentiel serait proposée en deuxième année de bac pro en 3 ans) ne permettra pas une évolution dans ce sens.
Je remercie amicalement Charles Kaoua, Richard Le Saux et Christophe Szczygielski pour leurs animations sous Géogebra.