Mathématice, intégration des Tice dans l'enseignement des mathématiques  
Sommaire > N°38 - janvier 2014 > Regards croisés sur l’algorithmique et la (...)

Regards croisés sur l’algorithmique et la programmation (3)
Algorithmique et programmation autour des suites
Moteur de recherche
Mis en ligne le 15 janvier 2014, par Alain Busser, Guillaume Connan, Hubert Raymondaud, Pierre-Marc Mazat, Stéphan Manganelli

Cet article peut être librement diffusé et son contenu réutilisé pour une utilisation non commerciale (contacter l’auteur pour une utilisation commerciale) suivant la licence CC-by-nc-sa (http://creativecommons.org/licenses/by-nc-sa/3.0/fr/legalcode)

Le troisième volet de cette rubrique s’intéresse à l’algorithmique et à la programmation autour de la notion de suite.

Contribution d’Alain Busser avec MathsOntologie et avec CoffeeScript

Humour à la Magritte

Humour à la Magritte
image/svg+xml 4 1 5 9 265358 3, 1 Ceci n'est pas une suite Ma grippe

Sur les suites, voir cet article sur les suites récurrentes et, concernant le calcul à grande précision, cet article sur Python qui s’applique presque sans modification à CoffeeScript. De toute manière, entrer "suite" dans le moteur de recherche de ce site ne peut mener qu’à des articles en rapport avec celui-ci.

L’article sur MathsOntologie cite en exemple la fonction σ(n) (somme des diviseurs de n), qui est une suite entière puisqu’à chaque entier n, elle associe un entier [1] ; en transformant cette suite en suite itérée, on définit les suites aliquotes qui évoquent fortement la suite de Collatz, mais avec beaucoup plus de résultats.

Enfin, l’article sur CoffeeScript donne un algorithme assez rapide pour calculer le nombre de moyens de constituer 89 centimes uniquement avec des pièces rouges. Sur ce problème, un article traite d’un problème voisin : Quel jeu de pièces permet de constituer toutes les sommes possibles en minimisant le nombre de pièces nécessaire ?

  • Avec MathsOntologie

MathsOntologie peut être téléchargé en suivant ce lien et sa documentation comporte une étude de cas portant sur une suite entière : l’indicatrice d’Euler.

l’article en pdf le source en odt
PDF - 794.2 ko
suites avec MathsOntologie
L’accent est mis sur les suites entières ; en effet MathsOntologie est assez porté sur l’arithmétique
OpenDocument Text - 781.6 ko
suites avec MathsOntologie
source du pdf ci-joint
  • Avec CoffeeScript

Les algorithmes de l’article se testent idéalement sur cet outil créé spécialement à cet usage [2] :

Zip - 326 ko
alcoffeethmique
logiciel d’algorithmique en CoffeeScript
l’article en pdf le source en odt
PDF - 1.5 Mo
suites avec CoffeeScript
l’article en pdf ; on peut copier-coller les algorithmes dans alcoffeethmique
OpenDocument Text - 994.6 ko
suites avec CoffeeScript
source du document précédent

Pour tester CoffeeScript en ligne

Suite de Lucas

Permet de tester si un nombre est premier; ne réussit pas à tous les coups puisqu'il y a des "faux positifs" appelés nombres pseudo-premiers de Lucas; le plus petit de ces nombres est 705 = 3 × 5 × 47 :

Test de Lucas-Lehmer

Ce test s'applique aux nombres de Mersenne; donc on entre l'exposant p de Mp=2p-1

Note: On est prié d'entrer un exposant premier, faute de quoi la maison Fermat décline toute responsabilité

En effet, le "petit théorème de Fermat" permet de montrer que la primalité de p est nécessaire.

Par ailleurs, pour éviter des dépassements de capacité, le test répond n'importe quoi si l'exposant est supérieur à 20. On ne peut donc concrètement utiliser le test de Lucas-Lehmer que pour les exposants suivants: 3, 5, 7, 11, 13, 17 et 19 (avec 2, surgit un autre problème: il n'y a pas assez de places pour boucler; mais le fait que 22-1=3 est premier, est notoire...)

On constate que le seul nombre composé de la liste ci-dessus est 211-1=23 × 89. Le test de Lucas-Lehmer est utilisé pour trouver les plus grands nombres de Mersenne premiers connus (projet Great Internet Mersenne Prime Search)

Limites de suites géométriques

La limite d'une suite géométrique dépend de la position de sa raison par rapport à l'intervalle [-1;1] ainsi que du signe du premier terme et de la raison.


Contribution de Guillaume Connan


Contribution de Stephan Manganelli : Tir à LARP

L’essentiel de la contribution se trouve dans le ficher PDF SuitesManganelli_3

PDF - 1.5 Mo
SuitesManganelli_3

Les dix exercices décrits dans ce fichier sont analysés sous forme d’organigrammes générés par LARP.

Les programmes LARP figurent dans le fichier zippé LarpSuiteManga-2.zip

Zip - 5.6 ko
LarpSuiteManga-2.zip

Voici la procédure qui permet de tirer le meilleur parti de ces documents [3] :

  • Téléchargez gratuitement et installez LARP sur votre ordinateur : http://www.marcolavoie.ca/larp/fr/default.htm
  • Dézippez le fichier .zip
  • Double-cliquez alors sur les différents fichiers LARP obtenus : les organigrammes apparaissent clairement et complètement, et l’on peut exécuter les programmes.

Contribution de Pierre-Marc Mazat

Vous êtes prof de maths et vous souhaitez évaluer psychologiquement vos élèves (on ne sait jamais...). Le PDF suivant est fait pour vous (avec le fichier permettant de générer les belles figures) :

PDF - 523.9 ko
Suites et test de Rorschach.pdf
CarMetal - 2.1 ko
Suites et test de Rorschach.zirs

La version R d’Hubert Raymondaud, avec en plus, une superbe coloration des figures aux couleurs de l’arc-en-ciel.

PDF - 329.1 ko
Suites et test de Rorschach version R.pdf

La suite de cette histoire de suites, c’est de considérer les extrémités des segments comme un nuage de points, elle est racontée dans l’onglet "Voronoï" de cet article par Alain Busser.


Contribution d’Hubert Raymondaud

Je traite deux exemples :

  • Le premier est tiré d’un ancien manuel de terminale S (Terracher). Il s’agit de conjecturer les limites de suites étudiées dans l’exercice, en partant directement de la figure géométrique proposée. C’est aussi l’occasion d’utiliser des suites pour faire la construction de cette figure géométrique. On pense à une fractale, mais ça n’en est pas !
    Cet exemple détaille aussi (et je dirais même surtout) les principales étapes de la démarche qui a abouti à l’élaboration de l’algorithme et à sa mise en oeuvre avec R.
  • Le deuxième consiste à explorer des suites de Syracuse d’une façon originale, en utilisant des outils de la satistique descriptive qui font apparaitre certaines structures ...
PDF - 525.6 ko
Etude des deux problèmes
R - 7.6 ko
Les programmes en R

notes

[1La documentation de MathsOntologie cite une autre suite entière : L’indicatrice d’Euler

[2pour tester un des algorithmes qui sont donnés en exemple, il suffit de cliquer dessus, ou de le "toucher", puis de cliquer sur le bouton "cours, cours"

[3Cette procédure est toutefois réservée aux utilisateurs de systèmes Windows. Pour les autres, comme LARP n’a pas été porté sous d’autres systèmes, il est nécessaire d’émuler Windows, par exemple avec wine.

Documents associés à l'article
     |   (Scalable Vector Graphics - 3.8 ko)
Réagir à cet article
Vous souhaitez compléter cet article pour un numéro futur, réagir à son contenu, demander des précisions à l'auteur ou au comité de rédaction...
À lire aussi ici
MathémaTICE est un projet
en collaboration avec
Suivre la vie du site Flux RSS 2.0  |  Espace de rédaction  |  Nous contacter  |  Site réalisé avec: SPIP  |  N° ISSN 2109-9197